Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 708
Filtrar
1.
Cell Death Dis ; 15(3): 218, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490994

RESUMO

Gastric cancer (GC), notorious for its poor prognosis, often advances to peritoneal dissemination, a crucial determinant of detrimental outcomes. This study intricately explores the role of the TGFß-Smad-LIF axis within the tumor microenvironment in propagating peritoneal metastasis, with a specific emphasis on its molecular mechanism in instigating Neutrophil Extracellular Traps (NETs) formation and encouraging GC cellular functions. Through a blend of bioinformatics analyses, utilizing TCGA and GEO databases, and meticulous in vivo and in vitro experiments, LIF was identified as pivotally associated with GC metastasis, notably, enhancing the NETs formation through neutrophil stimulation. Mechanistically, TGF-ß was substantiated to elevate LIF expression via the activation of the Smad2/3 complex, culminating in NETs formation and consequently, propelling peritoneal metastasis of GC. This revelation uncovers a novel potential therapeutic target, promising a new avenue in managing GC and mitigating its metastatic propensities.


Assuntos
Armadilhas Extracelulares , Neoplasias Peritoneais , Neoplasias Gástricas , Fator de Crescimento Transformador beta , Humanos , Armadilhas Extracelulares/metabolismo , Neutrófilos/metabolismo , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/patologia , Neoplasias Gástricas/patologia , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral , Fator Inibidor de Leucemia/metabolismo , Transdução de Sinais
2.
Biochem Pharmacol ; 223: 116134, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38494064

RESUMO

The leukemia inhibitory factor (LIF) is member of interleukin (IL)-6 family of cytokines involved immune regulation, morphogenesis and oncogenesis. In cancer tissues, LIF binds a heterodimeric receptor (LIFR), formed by a LIFRß subunit and glycoprotein(gp)130, promoting epithelial mesenchymal transition and cell growth. Bile acids are cholesterol metabolites generated at the interface of host metabolism and the intestinal microbiota. Here we demonstrated that bile acids serve as endogenous antagonist to LIFR in oncogenesis. The tissue characterization of bile acids content in non-cancer and cancer biopsy pairs from gastric adenocarcinomas (GC) demonstrated that bile acids accumulate within cancer tissues, with glyco-deoxycholic acid (GDCA) functioning as negative regulator of LIFR expression. In patient-derived organoids (hPDOs) from GC patients, GDCA reverses LIF-induced stemness and proliferation. In summary, we have identified the secondary bile acids as the first endogenous antagonist to LIFR supporting a development of bile acid-based therapies in LIF-mediated oncogenesis.


Assuntos
Interleucina-6 , Receptores de Citocinas , Humanos , Receptores de OSM-LIF , Fator Inibidor de Leucemia/metabolismo , Receptores de Citocinas/metabolismo , Carcinogênese
3.
Endocrinology ; 165(5)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38518755

RESUMO

Seminal extracellular vesicles (EVs) contain different subgroups that have diverse effects on sperm function. However, the effect of seminal EVs-especially their subgroups-on endometrial receptivity is largely unknown. Here, we found that seminal EVs could be divided into high-density EVs (EV-H), medium density EVs, and low-density EVs after purification using iodixanol. We demonstrated that EV-H could promote the expression and secretion of leukemia inhibitor factor (LIF) in human endometrial cells. In EV-H-treated endometrial cells, we identified 1274 differentially expressed genes (DEGs). DEGs were enriched in cell adhesion and AKT and STAT3 pathways. Therefore, we illustrated that EV-H enhanced the adhesion of human choriocarcinoma JAr cell spheroids to endometrial cells through the LIF-STAT3 pathway. Collectively, our findings indicated that seminal EV-H could regulate endometrial receptivity through the LIF pathway, which could provide novel insights into male fertility.


Assuntos
Implantação do Embrião , Vesículas Extracelulares , Gravidez , Feminino , Humanos , Masculino , Implantação do Embrião/fisiologia , Fator Inibidor de Leucemia/metabolismo , Sêmen/metabolismo , Adesão Celular/fisiologia , Vesículas Extracelulares/metabolismo , Endométrio/metabolismo
4.
Nat Commun ; 15(1): 627, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245529

RESUMO

Cancer cachexia is a systemic metabolic syndrome characterized by involuntary weight loss, and muscle and adipose tissue wasting. Mechanisms underlying cachexia remain poorly understood. Leukemia inhibitory factor (LIF), a multi-functional cytokine, has been suggested as a cachexia-inducing factor. In a transgenic mouse model with conditional LIF expression, systemic elevation of LIF induces cachexia. LIF overexpression decreases de novo lipogenesis and disrupts lipid homeostasis in the liver. Liver-specific LIF receptor knockout attenuates LIF-induced cachexia, suggesting that LIF-induced functional changes in the liver contribute to cachexia. Mechanistically, LIF overexpression activates STAT3 to downregulate PPARα, a master regulator of lipid metabolism, leading to the downregulation of a group of PPARα target genes involved in lipogenesis and decreased lipogenesis in the liver. Activating PPARα by fenofibrate, a PPARα agonist, restores lipid homeostasis in the liver and inhibits LIF-induced cachexia. These results provide valuable insights into cachexia, which may help develop strategies to treat cancer cachexia.


Assuntos
Caquexia , Neoplasias , Animais , Camundongos , Caquexia/genética , Caquexia/metabolismo , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , Lipídeos , Lipogênese/genética , Fígado/metabolismo , Camundongos Transgênicos , Neoplasias/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo
5.
F S Sci ; 5(1): 92-103, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37972693

RESUMO

OBJECTIVE: To study the effect of adenomyosis on the localized expression of the GATA binding proteins 2 and 6 (GATA2 and GATA6) zinc-finger transcription factors that are involved in proliferation of hematopoietic and endocrine cell lineages, cell differentiation, and organogenesis, potentially leading to impaired endometrial implantation. DESIGN: Laboratory based experimental study. SETTING: Academic hospital and laboratory. PATIENTS: Human endometrial stromal cells (HESCs) of reproductive age patients, 18-45 years of age, with adenomyosis were compared with patients with no pathology and leiomyomatous uteri as controls (n = 4 in each group, respectively). Additionally, midsecretory phase endometrial sections were obtained from patients with adenomyosis and control patients with leiomyoma (n = 8 in each group, respectively). INTERVENTIONS: GATA2 and GATA6 immunohistochemistry and H-SCORE were performed on the midsecretory phase endometrial sections from adenomyosis and leiomyoma control patients (n = 8 each, respectively). Control and adenomyosis patient HESC cultures were treated with placebo or 10-8 M estradiol (E2), or decidualization media (EMC) containing 10-8 M E2, 10-7 M medroxyprogesterone acetate, and 5 × 10-5 M cAMP for 6 and 10 days. Additionally, control HESC cultures (n = 4) were transfected with scrambled small interfering RNA (siRNA) (control) or GATA2-specific siRNAs for 6 days while adenomyosis HESC cultures (n = 4) were transfected with human GATA2 expression vectors to silence or induce GATA2 overexpression. MAIN OUTCOME MEASURES: Immunohistochemistry was performed to obtain GATA2 and GATA6 H-SCORES in adenomyosis vs. control patient endometrial tissue. Expression of GATA2, GATA6, insulin-like growth factor-binding protein 1 (IGFBP1), prolactin (PRL), progesterone receptor (PGR), estrogen receptor 1 (ESR1), leukemia inhibitory factor (LIF), and Interleukin receptor 11 (IL11R) messenger RNA (mRNA) levels were analyzed using by qPCR with normalization to ACTB. Silencing and overexpression experiments also had the corresponding mRNA levels of the above factors analyzed. Western blot analysis was performed on isolated proteins from transfection experiments. RESULTS: Immunohistochemistry revealed an overall fourfold lower GATA2 and fourfold higher GATA6 H-SCORE level in the endometrial stromal cells of patients with adenomyosis vs. controls. Decidual induction with EMC resulted in significantly lower GATA2, PGR, PRL and IGFBP1 mRNA levels in HESC cultures from patients with adenomyosis patient vs. controls. Leukemia inhibitory factor and IL11R mRNA levels were also significantly dysregulated in adenomyosis HESCs compared with controls. . Silencing of GATA2 expression in control HESCs induced an adenomyosis-like state with significant reductions in GATA2, increases in GATA6 and accompanying aberrations in PGR, PRL, ESR1 and LIF levels. Conversely, GATA2 overexpression via vector in adenomyosis HESCs caused partial restoration of the defective decidual response with significant increases in GATA2, PGR, PRL and LIF expression. CONCLUSION: In-vivo and in-vitro experiment results demonstrate that there is an overall inverse relationship between endometrial GATA2 and GATA6 levels in patients with adenomyosis who have diminished GATA2 levels and concurrently elevated GATA6 levels. Additionally, lower GATA2 and higher GATA6 levels, together with aberrant levels of important receptors and implantation factors, such as ESR1, PGR, IGFBP1, PRL, LIF, and IL11R mRNA in HESCs from patients with adenomyosis or GATA2-silenced control HESCs, support impaired decidualization. These effects were partially restored with GATA2 overexpression in adenomyosis HESCs, demonstrating a potential therapeutic target.


Assuntos
Adenomiose , Fator de Transcrição GATA2 , Fator de Transcrição GATA6 , Adolescente , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Adenomiose/genética , Adenomiose/metabolismo , Adenomiose/patologia , Decídua/metabolismo , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Fator de Transcrição GATA2/farmacologia , Fator de Transcrição GATA6/genética , Fator de Transcrição GATA6/metabolismo , Fator de Transcrição GATA6/farmacologia , Leiomioma , Fator Inibidor de Leucemia/metabolismo , Fator Inibidor de Leucemia/farmacologia , Prolactina/metabolismo , Prolactina/farmacologia , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/farmacologia , Fatores de Transcrição
6.
Inflammation ; 47(1): 307-322, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37782452

RESUMO

Leukemia inhibitory factor (LIF) has been recognized as a novel inflammatory modulator in inflammation-associated diseases. This study aimed to investigate the modulation of LIF in dental pulp inflammation. Experimental pulpitis was established in wild-type (WT) and Lif-deficient (Lif-/-) mice. Histological and immunostaining analyses were conducted to assess the role of LIF in the progression of pulpitis. Mouse macrophage cell line (RAW264.7) was treated with LPS to simulate an inflammatory environment. Exogenous LIF was added to this system to examine its modulation in macrophage inflammatory response in vitro. Primary bone marrow-derived macrophages (BMDMs) from WT and Lif-/- mice were isolated and stimulated with LPS to confirm the effect of Lif deletion on macrophage inflammatory response. Supernatants from LIF and LPS-treated human dental pulp cells (hDPCs) were collected and added to macrophages. Macrophage chemotaxis was assessed using transwell assays. The results showed an increased expression of LIF and LIFR with the progression of pulpitis, and LIFR was highly expressed in macrophages. Lif deficiency alleviated experimental pulpitis with the reduction of pro-inflammatory cytokines and macrophage infiltration. Exogenous LIF promoted inflammatory response of LPS-induced macrophages through a STAT3/p65-dependent pathway. Consistently, Lif deletion inhibited macrophage inflammatory response in vitro. Supernatants of LIF-treated hDPCs enhanced macrophage migration in LPS-induced inflammatory environment. Our findings demonstrated that LIF aggravates pulpitis by promoting macrophage inflammatory response through a STAT3/p65-dependent pathway. Furthermore, LIF plays a crucial role in driving the recruitment of macrophages to inflamed pulp tissue by promoting chemokine secretion in DPCs.


Assuntos
Pulpite , Animais , Humanos , Camundongos , Polpa Dentária/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Fator Inibidor de Leucemia/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Pulpite/metabolismo
7.
Ecotoxicol Environ Saf ; 270: 115848, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38134636

RESUMO

PURPOSE: Prolonged exposure to low dose-rate radiation (LDRR) is of growing concern to public health. Recent evidences indicates that LDRR causes deleterious health effects and is closely related to miRNAs. The aim of our study is to investigate the relationship between miRNAs and DNA damage caused by LDRR. MATERIALS AND METHODS: In this study, we irradiated C57BL/6J mice with 12.5µGy/h dose of γ ray emitted from uranium ore for 8 h a day for 120 days at a total dose of 12 mGy, and identified differentially expressed miRNAs from the mice long-term exposed to LDRR through isolating serum RNAs, constructing small RNA library, Illumina sequencing. To further investigate the role of differential miRNA under LDRR,we first built DNA damage model in Immortal B cells irradiated with 12.5µGy/h dose of γ ray for 28 days at a total dose of 9.4 mGy. Then, we chose the highly conserved miR-181c-3p among 12 miRNA and its mechanism in alleviating DNA damage induced by LDRR was studied by transfection, quantitative PCR, luciferase assay, and Western blot. RESULTS AND CONCLUSIONS: We have found that 12 differentially expressed miRNAs including miR-181c-3p in serum isolated from irradiated mice. Analysis of GO and KEGG indicated that target genes of theses 12 miRNA enriched in pathways related to membrane, protein binding and cancer. Long-term exposure to LDRR induced upregulation of gamma-H2A histone family member X (γ-H2AX) expression, a classical biomarker for DNA damage in B cells. miR-181c-3p inhibited Leukemia inhibitory factor (LIF) expression via combining its 3'UTR. LIF, MDM2, p53, and p-p53-s6 were upregulated after exposure to LDRR. In irradiated B cells, Transfection of miR-181c-3p reduced γ-H2AX expression and suppressed LIF and MDM2 protein levels, whereas p-p53-s6 expression was increased. As expected, the effect of LIF inhibition on irradiated B cells was similar to miR-181c-3p overexpression. Our results suggest that LDRR alters miRNA expression and induces DNA damage. Furthermore, miR-181c-3p can alleviate LDRR-induced DNA damage via the LIF/MDM2/p-p53-s6 pathway in human B lymphocytes. This could provide the basis for prevention and treatment of LDRR injury.


Assuntos
MicroRNAs , Proteína Supressora de Tumor p53 , Humanos , Camundongos , Animais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Fator Inibidor de Leucemia/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Linfócitos B
8.
Genes Cells ; 28(12): 868-880, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37837427

RESUMO

Primary cilia on neural stem/progenitor cells (NSPCs) play an important role in determining cell fate, although the regulatory mechanisms involved in the ciliogenesis remain largely unknown. In this study, we analyzed the effect of the leukemia inhibitory factor (LIF) for the primary cilia in immortalized human NSPCs. LIF withdrawal elongated the primary cilia length, whereas the addition of LIF shortened it. Microarray gene expression analysis revealed that differentially expressed genes (DEGs) associated with LIF treatment were related with the multiple cytokine signaling pathways. Among the DEGs, C-C motif chemokine 2 (CCL2) had the highest ranking and its increase in the protein concentration in the NSPCs-conditioned medium after the LIF treatment was confirmed by ELISA. Interestingly, we found that CCL2 was a negative regulator of cilium length, and LIF-induced shortening of primary cilia was antagonized by CCL2-specific antibody, suggesting that LIF could influence cilia length via upregulating CCL2. The shortening effect of LIF and CCL2 on primary cilia was also observed in SH-SY5Y cells. The results of the study suggested that the LIF-CCL2 axis may well be a regulator of NSPCs and its primary cilia length, which could affect multiple cellular processes, including NSPC proliferation and differentiation.


Assuntos
Células-Tronco Neurais , Neuroblastoma , Humanos , Cílios/metabolismo , Transdução de Sinais , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , Fator Inibidor de Leucemia/farmacologia , Células-Tronco Neurais/metabolismo , Diferenciação Celular/fisiologia
9.
Reprod Sci ; 30(10): 3084-3091, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37126206

RESUMO

Kisspeptin (KP) is a group of hypothalamic neuropeptides encoded by KISS-1 gene. KP-54, a 54-amino-acid peptide, helps regulate the hypothalamic-pituitary-ovarian axis and plays a potential role in implantation. C57BL/6 J female mice were superovulated via intraperitoneal injection of 5 International Units (IU) pregnant mare serum gonadotrophin (day 1). Forty-eight hours later, mice (5/group) were injected with phosphate-buffered saline (PBS) (group A), 5 IU human chorionic gonadotrophin (hCG) (group B), or 3 nmol KP-54 (group C). On day 7, mice were euthanized and uteri excised to create paraformaldehyde-fixed paraffin-embedded sections that were immunostained for the implantation markers: leukemia inhibitory factor (LIF) and integrin αVß3 (ITG αVß3). Slides were scored for intensity of staining in endometrial glandular epithelium (GE) and stromal cells (SCs) via histoscore (H-score). Data were analyzed using the Kruskal-Wallis test followed by the Mann-Whitney U test for pairwise comparisons. LIF expression was significantly higher in GE and SCs of mice triggered with KP-54 compared to placebo (P = .009 for both), but only higher than hCG trigger group in SCs (P = .009). Meanwhile, ITG αVß3 expression was significantly higher in SCs of mice triggered with KP-54 compared to placebo (P = .028). In conclusion, using KP-54 as an ovulation trigger resulted in higher expression of the implantation markers LIF and ITG αVß3 in mice endometrium compared to hCG or placebo. This suggests a potential role for KP-54 trigger in improving embryo implantation in clinical IVF. However, further studies are needed to correlate these results with clinical implantation rates and pregnancy outcomes.


Assuntos
Integrina alfaVbeta3 , Kisspeptinas , Gravidez , Feminino , Animais , Cavalos , Camundongos , Humanos , Integrina alfaVbeta3/metabolismo , Kisspeptinas/metabolismo , Fator Inibidor de Leucemia/metabolismo , Imuno-Histoquímica , Indução da Ovulação/métodos , Camundongos Endogâmicos C57BL , Implantação do Embrião/fisiologia , Endométrio/metabolismo , Ovulação , Gonadotropina Coriônica/farmacologia , Gonadotropina Coriônica/metabolismo
10.
Stem Cells Dev ; 32(15-16): 434-449, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37183401

RESUMO

The ShcA adapter protein is necessary for early embryonic development. The role of ShcA in development is primarily attributed to its 52 and 46 kDa isoforms that transduce receptor tyrosine kinase signaling through the extracellular signal regulated kinase (ERK). During embryogenesis, ERK acts as the primary signaling effector, driving fate acquisition and germ layer specification. P66Shc, the largest of the ShcA isoforms, has been observed to antagonize ERK in several contexts; however, its role during embryonic development remains poorly understood. We hypothesized that p66Shc could act as a negative regulator of ERK activity during embryonic development, antagonizing early lineage commitment. To explore the role of p66Shc in stem cell self-renewal and differentiation, we created a p66Shc knockout murine embryonic stem cell (mESC) line. Deletion of p66Shc enhanced basal ERK activity, but surprisingly, instead of inducing mESC differentiation, loss of p66Shc enhanced the expression of core and naive pluripotency markers. Using pharmacologic inhibitors to interrogate potential signaling mechanisms, we discovered that p66Shc deletion permits the self-renewal of naive mESCs in the absence of conventional growth factors, by increasing their responsiveness to leukemia inhibitory factor (LIF). We discovered that loss of p66Shc enhanced not only increased ERK phosphorylation but also increased phosphorylation of Signal transducer and activator of transcription in mESCs, which may be acting to stabilize their naive-like identity, desensitizing them to ERK-mediated differentiation cues. These findings identify p66Shc as a regulator of both LIF-mediated ESC pluripotency and of signaling cascades that initiate postimplantation embryonic development and ESC commitment.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular , Células-Tronco Embrionárias Murinas , Animais , Camundongos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/farmacologia , Fator Inibidor de Leucemia/metabolismo , Diferenciação Celular , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
11.
Front Immunol ; 14: 1089098, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033980

RESUMO

Endometriosis is an estrogen dominant, chronic inflammatory disease characterized by the growth of endometrial-like tissue outside of the uterus. The most common symptoms experienced by patients include manifestations of chronic pelvic pain- such as pain with urination, menstruation, or defecation, and infertility. Alterations to Leukemia Inhibitory Factor (LIF), a cytokine produced by the luminal and glandular epithelium of the endometrium that is imperative for successful pregnancy, have been postulated to contribute to infertility. Conditions such as recurrent implantation failure, unexplained infertility, and infertility associated diseases such as adenomyosis and endometriosis, have demonstrated reduced LIF production in the endometrium of infertile patients compared to fertile counterparts. While this highlights the potential involvement of LIF in infertility, LIF is a multifaceted cytokine which plays additional roles in the maintenance of cell stemness and immunomodulation. Thus, we sought to explore the implications of LIF production within ectopic lesions on endometriosis pathophysiology. Through immunohistochemistry of an endometrioma tissue microarray and ELISA of tissue protein extract and peritoneal fluid samples, we identify LIF protein expression in the ectopic lesion microenvironment. Targeted RT qPCR for LIF and associated signaling transcripts, identify LIF to be significantly downregulated in the ectopic tissue compared to eutopic and control while its receptor, LIFR, is upregulated, highlighting a discordance in ectopic protein and mRNA LIF expression. In vitro treatment of endometriosis representative cell lines (12Z and hESC) with LIF increased production of immune-recruiting cytokines (MCP-1, MCP-3) and the angiogenic factor, VEGF, as well as stimulated tube formation in human umbilical vein endothelial cells (HUVECs). Finally, LIF treatment in a syngeneic mouse model of endometriosis induced both local and peripheral alterations to immune cell phenotypes, ultimately reducing immunoregulatory CD206+ small peritoneal macrophages and T regulatory cells. These findings suggest that LIF is present in the ectopic lesions of endometriosis patients and could be contributing to lesion vascularization and immunomodulation.


Assuntos
Endometriose , Infertilidade Feminina , Gravidez , Feminino , Animais , Camundongos , Humanos , Endometriose/patologia , Fator Inibidor de Leucemia/metabolismo , Células Endoteliais/metabolismo , Endométrio
12.
Lab Invest ; 103(3): 100026, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36925206

RESUMO

Repeated implantation failure is a major cause of infertility among healthy women. Uterine ß-catenin (CTNNB1) plays a critical role in implantation. However, the role of embryonic CTNNB1 during implantation remains unclear. We addressed this topic by analyzing mice carrying Ctnnb1-deficient (Ctnnb1Δ/Δ) embryos. Ctnnb1Δ/Δ embryos were produced by intercrossing mice bearing Ctnnb1-deficient eggs and sperms. We found that Ctnnb1Δ/Δ embryos developed to the blastocyst stage; thereafter, they were resorbed, leaving empty decidual capsules. Moreover, leukemia inhibitory factor, a uterine factor essential for implantation, was undetectable in Ctnnb1Δ/Δ blastocysts. Furthermore, CDX2, a transcription factor that determines the fate of trophectoderm cells, was not observed in Ctnnb1Δ/Δ blastocysts. Intrauterine injection with uterine fluids (from control mice) and recombinant mouse leukemia inhibitory factor proteins rescued the uterine response to Ctnnb1Δ/Δ blastocysts. These results suggest that embryonic CTNNB1 is required for the secretion of blastocyst-derived factor(s) that open the implantation window, indicating that the uterine response to implantation can be induced using supplemental materials. Therefore, our results may contribute to the discovery of a similar mechanism in humans, leading to a better understanding of the pathogenesis of repeated implantation failure.


Assuntos
Implantação do Embrião , beta Catenina , Animais , Feminino , Humanos , Camundongos , beta Catenina/genética , beta Catenina/metabolismo , Blastocisto/metabolismo , Implantação do Embrião/fisiologia , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , Útero/metabolismo
13.
Cell Biol Int ; 47(5): 981-989, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36691872

RESUMO

Leukemia inhibitory factor (LIF) is an important growth factor that supports the culture and maintenance of spermatogonial stem cells (SSCs) by suppressing spontaneous differentiation. Different LIF sequences may lead to differences in function. The protein sequences of buffalo LIF and mouse LIF differed by 65.5% according to MEGA software analysis. The PB-LIF-GFP-Puro vector was constructed, and the CHO-K1 cell line was established. The final LIF protein concentration in the CHO-K1 cell culture medium was approximately 4.268 ng/mL. Here, we report that buffalo LIF effectively maintains the self-renewal of buffalo spermatogonia during culture. Buffalo spermatogonia were cultured in conditioned medium containing no LIF (0 ng/mL), mouse LIF (1 ng/mL), mouse LIF (10 ng/mL), or buffalo LIF (1 ng/mL). Furthermore, the effects of mouse LIF and buffalo LIF culture on the maintenance of buffalo spermatogonia were determined by analyzing cell colony formation, quantitative real-time polymerase chain reaction, cell immunofluorescence, and cell counting. The buffalo LIF (1 ng/mL) group showed similar maintenance of the proliferation of buffalo spermatogonia to that in the mouse LIF (10 ng/mL) group. These results demonstrated that the proliferation of buffalo spermatogonia can be maintained in vitro by adding a low dose of buffalo LIF. This study provides a foundation for the further optimization of in vitro buffalo SSC culture systems.


Assuntos
Espermatogônias , Células-Tronco , Animais , Masculino , Camundongos , Fator Inibidor de Leucemia/metabolismo , Fator Inibidor de Leucemia/farmacologia , Meios de Cultura , Diferenciação Celular , Células Cultivadas
14.
Sci Rep ; 13(1): 854, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36646738

RESUMO

Leukemia inhibitory factor (LIF) receptor, an interleukin 6 cytokine family signal transducer (Il6st, also known as Gp130) that is expressed in the uterine epithelium and stroma, has been recognized to play an essential role in embryo implantation. However, the molecular mechanism underlying Gp130-mediated LIF signaling in the uterine epithelium during embryo implantation has not been elucidated. In this study, we generated mice with uterine epithelium specific deletion of Gp130 (Gp130 ecKO). Gp130 ecKO females were infertile due to the failure of embryo attachment and decidualization. Histomorphological observation revealed that the endometrial shape and embryo position from Gp130 ecKO were comparable to those of the control, and uterine epithelial cell proliferation, whose attenuation is essential for embryo implantation, was controlled in Gp130 ecKO. Comprehensive gene expression analysis using RNA-seq indicates that epithelial Gp130 regulates the expression of estrogen- and progesterone-responsive genes in conjunction with immune response during embryo implantation. We also found that an epithelial remodeling factor, snail family transcriptional repressor 1 (Snai1), was markedly reduced in the pre-implantation uterus from Gp130 ecKO. These results suggest that not only the suppression of uterine epithelial cell proliferation, but also Gp130-mediated epithelial remodeling is required for successful implantation in mice.


Assuntos
Implantação do Embrião , Útero , Feminino , Camundongos , Animais , Receptor gp130 de Citocina/genética , Receptor gp130 de Citocina/metabolismo , Útero/metabolismo , Implantação do Embrião/fisiologia , Estrogênios/metabolismo , Progesterona/metabolismo , Receptores de OSM-LIF , Fator Inibidor de Leucemia/metabolismo
15.
Arch Physiol Biochem ; 129(1): 33-40, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32658632

RESUMO

PURPOSE: In the study, we aimed to explore the mechanism of leukaemia inhibitory factor (LIF) affects hyperglycaemic induced retinopathy by regulating CaMKII-CREB pathway. METHODS: Human retinal endothelial cell (HRECs) induced by high glucose to simulate one of the pathogenesis in the diabetic retinopathy (DR) model. After LIF treatment, cell viability was detected by CCK-8 and apoptosis was detected by flow cytometry. Angiogenesis was detected by in vitro tube formation. The expression levels of inflammatory, angiogenesis related proteins and CaMKII-CREB were detected by western blot. The gene level of angiogenesis was detected by qRT-PCR. HE staining was used to detect pathological changes of retinopathy in diabetic mice after LIF treatment. RESULTS: Our results showed that LIF significantly increased hyperglycaemic-induced cell viability and inhibited apoptosis. Western blot results showed that LIF could down-regulate the expression levels of inflammatory cytokines such as IL-1ß, IL-6 and TNF-α. In addition, angiogenesis of HRECs was inhibited by LIF in tubulisation experiments. LIF can down-regulate protein and gene levels of VEGF and HIF-1α via western blot and qRT-PCR. In diabetic mice induced by STZ, LIF could down-regulate the protein level of VEGF, HIF-1α, p-CaMKII and p-CREB, which suggest that LIF could inhibit retinal angiogenesis in diabetic mice. The results of HE staining showed that LIF could alleviate the damage of retinopathy in diabetic mice. CONCLUSION: LIF could alleviate the damage of diabetic retinopathy by modulating the CaMKII/CREB signalling pathway to inhibit inflammatory response and angiogenesis.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Hiperglicemia , Humanos , Camundongos , Animais , Retinopatia Diabética/patologia , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , Diabetes Mellitus Experimental/patologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células Endoteliais/metabolismo , Glucose/toxicidade , Glucose/metabolismo , Hiperglicemia/metabolismo
16.
Clin Cancer Res ; 29(4): 791-804, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36441800

RESUMO

PURPOSE: Leukemia inhibitory factor (LIF) is a multifunctional cytokine with numerous reported roles in cancer and is thought to drive tumor development and progression. Characterization of LIF and clinical-stage LIF inhibitors would increase our understanding of LIF as a therapeutic target. EXPERIMENTAL DESIGN: We first tested the association of LIF expression with transcript signatures representing multiple processes regulating tumor development and progression. Next, we developed MSC-1, a high-affinity therapeutic antibody that potently inhibits LIF signaling and tested it in immune competent animal models of cancer. RESULTS: LIF was associated with signatures of tumor-associated macrophages (TAM) across 7,769 tumor samples spanning 22 solid tumor indications. In human tumors, LIF receptor was highly expressed within the macrophage compartment and LIF treatment drove macrophages to acquire immunosuppressive capacity. MSC-1 potently inhibited LIF signaling by binding an epitope that overlaps with the gp130 receptor binding site on LIF. MSC-1 showed monotherapy efficacy in vivo and drove TAMs to acquire antitumor and proinflammatory function in syngeneic colon cancer mouse models. Combining MSC-1 with anti-PD1 leads to strong antitumor response and a long-term tumor-free survival in a significant proportion of treated mice. CONCLUSIONS: Overall, our findings highlight LIF as a therapeutic target for cancer immunotherapy.


Assuntos
Neoplasias , Microambiente Tumoral , Animais , Humanos , Camundongos , Terapia de Imunossupressão , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , Macrófagos/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Microambiente Tumoral/genética
17.
Mol Ther ; 31(2): 331-343, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36575793

RESUMO

Leukemia inhibitory factor (LIF) is a pleiotropic cytokine of the interleukin-6 (IL-6) superfamily. LIF was initially discovered as a factor to induce the differentiation of myeloid leukemia cells and thus inhibit their proliferation. Subsequent studies have highlighted the multi-functions of LIF under a wide variety of physiological and pathological conditions in a highly cell-, tissue-, and context-dependent manner. Emerging evidence has demonstrated that LIF plays an essential role in the stem cell niche, where it maintains the homeostasis and regeneration of multiple somatic tissues, including intestine, neuron, and muscle. Further, LIF exerts a crucial regulatory role in immunity and functions as a protective factor against many immunopathological diseases, such as infection, inflammatory bowel disease (IBD), and graft-verse-host disease (GVHD). It is worth noting that while LIF displays a tumor-suppressive function in leukemia, recent studies have highlighted the oncogenic role of LIF in many types of solid tumors, further demonstrating the complexities and context-dependent effects of LIF. In this review, we summarize the recent insights into the roles and mechanisms of LIF in stem cell homeostasis and regeneration, immunity, and cancer, and discuss the potential therapeutic options for human diseases by modulating LIF levels and functions.


Assuntos
Inibidores do Crescimento , Interleucina-6 , Humanos , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , Inibidores do Crescimento/farmacologia , Inibidores do Crescimento/fisiologia , Diferenciação Celular , Subunidade alfa de Receptor de Fator Inibidor de Leucemia , Linfocinas/farmacologia , Linfocinas/fisiologia
18.
Biol Open ; 12(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36504370

RESUMO

We previously demonstrated gradual loss of epiblast during diapause in embryos lacking components of the LIF/IL6 receptor. Here, we explore the requirement for the downstream signalling transducer andactivator of transcription STAT3 and its target, TFCP2L1, in maintenance of naïve pluripotency. Unlike conventional markers, such as NANOG, which remains high in epiblast until implantation, both STAT3 and TFCP2L1 proteins decline during blastocyst expansion, but intensify in the embryonic region after induction of diapause, as observed visually and confirmed using our image-analysis pipeline, consistent with our previous transcriptional expression data. Embryos lacking STAT3 or TFCP2L1 underwent catastrophic loss of most of the inner cell mass during the first few days of diapause, indicating involvement of signals in addition to LIF/IL6 for sustaining naïve pluripotency in vivo. By blocking MEK/ERK signalling from the morula stage, we could derive embryonic stem cells with high efficiency from STAT3 null embryos, but not those lacking TFCP2L1, suggesting a hitherto unknown additional role for this essential STAT3 target in transition from embryo to embryonic stem cells in vitro. This article has an associated First Person interview with the first author of the paper.


Assuntos
Células-Tronco Pluripotentes , Proteínas Repressoras , Fator de Transcrição STAT3 , Camundongos , Blastocisto/metabolismo , Células-Tronco Embrionárias/metabolismo , Fator Inibidor de Leucemia/metabolismo , Células-Tronco Pluripotentes/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Animais
19.
Clin Lab ; 68(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36546756

RESUMO

BACKGROUND: Uterine receptivity and implantation are complex processes requiring coordinated expression of molecules by zygote and uterus. Leukemia inhibitory factor (LIF) is one of the most important cytokines in the reproductive tract. Without expression of LIF in the uterus, implantation of a blastocyst cannot begin. Our objectives were to measure the leukemia inhibitory factor (LIF) concentration in serum with or without endometrial scratch-ing in women with unexplained infertility. METHODS: This study is a randomized control trial, carried out at the infertility clinic of Qena University hospital, South Valley University, Egypt. The study included 200 women with unexplained infertility divided into two groups: Group 1 included 100 patients undergoing endometrial scratching at mid luteal phase. Group 2 included 100 patients undergoing expectant management. Serum leukemia inhibitory factor (LIF) concentration was measured at mid-luteal phase of cycle and follow up of pregnancy occurrence in both groups. RESULTS: LIF was significantly higher in the group of endometrial scratching compared to group 2. LIF was significantly higher in pregnant women compared to non-pregnant ones in both the endometrial scratching group and group 2. For the endometrial scratching group, LIF was a significant marker for successful implantation at cutoff point of 97.2 with sensitivity of 97.3% and specificity of 77.8% while PPV was 72% and NPV was 98. CONCLUSIONS: Endometrial scratching was associated with higher level of LIF and pregnancy rate. LIF was significantly higher in pregnant women with or without endometrial scratching.


Assuntos
Infertilidade Feminina , Feminino , Gravidez , Humanos , Infertilidade Feminina/diagnóstico , Infertilidade Feminina/terapia , Infertilidade Feminina/metabolismo , Fator Inibidor de Leucemia/metabolismo , Implantação do Embrião , Endométrio/metabolismo , Egito
20.
Int J Mol Sci ; 23(21)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36361987

RESUMO

In rodent models, leukemia inhibitory factor (LIF) is involved in cerebral development via the placenta, and maternal immune activation is linked to psychiatric disorders in the child. However, whether LIF acts directly on neural progenitor cells (NPCs) remains unclear. This study performed DNA microarray analysis and quantitative RT-PCR on the fetal cerebrum after maternal intraperitoneal or fetal intracerebral ventricular injection of LIF at day 14.5 (E14.5) and determined that the expression of insulin-like growth factors (IGF)-1 and -2 was induced by LIF. Physiological IGF-1 and IGF-2 levels in fetal cerebrospinal fluid (CSF) increased from E15.5 to E17.5, following the physiological surge of LIF levels in CSF at E15.5. Immunostaining showed that IGF-1 was expressed in the cerebrum at E15.5 to E19.5 and IGF-2 at E15.5 to E17.5 and that IGF-1 receptor and insulin receptor were co-expressed in NPCs. Further, LIF treatment enhanced cultured NPC proliferation, which was reduced by picropodophyllin, an IGF-1 receptor inhibitor, even under LIF supplementation. Our findings suggest that IGF expression and release from the NPCs of the fetal cerebrum in fetal CSF is induced by LIF, thus supporting the involvement of the LIF-IGF axis in cerebral cortical development in an autocrine/paracrine manner.


Assuntos
Cérebro , Fator Inibidor de Leucemia , Células-Tronco Neurais , Somatomedinas , Animais , Feminino , Gravidez , Ratos , Proliferação de Células , Cérebro/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Fator Inibidor de Leucemia/metabolismo , Células-Tronco Neurais/metabolismo , Receptor IGF Tipo 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...